2 просмотров

Как получают кислород в подводных лодках

Почему на подводных лодках морякам запрещают заниматься спортом

Получайте на почту один раз в сутки одну самую читаемую статью. Присоединяйтесь к нам в Facebook и ВКонтакте.

Каждый человек знает, что спорт – это важная составляющая крепкого здоровья и долгой жизни. А регулярные занятия и тренировки улучшают не только здоровье, но и внешний вид. Особенно важна отличная физическая подготовка для людей, которые защищают страну – военных, моряков, силовиков.

Конечно, не менее важны и эмоциональное, духовное состояние, но спорт позволяет повысить, улучшить и эти показатели, сделать мужчину более сильным во всех смыслах этого слова. В связи с этим военные, в частности на флоте, должны на постоянной основе тренироваться, совершенствовать свои навыки не только в военном деле, но и в спорте.

Однако к морякам, служащим на подводных лодках, это утверждение не относится. В данном случае правило не работает. Если на суше подводники проходят соответствующую подготовку, в том числе и спортивную, то на большинстве атомных современных субмарин силовые спортивные занятия запрещены. Это связано с негативным влиянием тренировок на здоровье человека.

Подлодки, оснащенные атомными реакторами (АПЛ), стали намного автономнее своих предшественниц. В связи с этим, они могут оставаться на глубине намного дольше.

Естественно, экипаж должен дышать, и для этого ему необходим воздух. Но здесь он искусственный, произведенный спецустановками жизнеобеспечения. Для того, чтобы люди могли дышать, им необходим кислород, получаемый в данном случае при помощи электролиза – вода из-за борта расщепляется на кислород и водород. На борту есть и специальные очистительные системы, удаляющие из воздуха, образующегося в результате жизнедеятельности моряков-подводников, углекислого газа.

Статья в тему:  Ямаха сколько кубов

Какая связь между воздухом внутри подлодки и спортивными занятиями

При интенсивных физических нагрузках выделяется больше углекислого газа, соответственно химическая формула воздуха нарушается, и это может отрицательно сказаться на здоровье членов экипажа. К тому же, под водой они находятся максимально допустимое количество времени (три месяца), а это само по себе является огромнейшей нагрузкой на все внутренние органы, в частности на сердце, почки и другие системы.

Но есть АПЛ, такие как подлодки проекта 941 «Акула», на которых изначально оборудованы спортзалы с тренажерами. Скорее всего на этих субмаринах установлена усовершенствованная система воздушной фильтрации и насыщения кислородом воздуха.

Понравилась статья? Тогда поддержи нас, жми:

Газовые циклы у подводных лодок

Одну из самых интересных технических проблем, связанных с оборотом технических газов, пришлось решать на подводном флоте. Обеспечение работы двигателей внутреннего сгорания (об атомных и иных энергоустановках речь здесь не идет) в замкнутом пространстве стало серьезным вызовом для конструкторов и инженеров. На его преодоление ушли целые десятилетия. При этом говорить об окончательной решенности проблем в данной сфере еще очень далеко.

«Нормальная» схема работы дизель-электрических лодок, как известно, устроена следующим образом. В надводном положении боевой корабль движется благодаря работе дизельного двигателя. Он одновременно и обеспечивает вращение винта, и снабжает энергией все системы судна, и заряжает аккумуляторы. В подводном положении такая схема неприменима, так как для работы подобного двигателя необходим воздух. Поэтому, опустившись на глубину, подводная лодка использует энергию, запасенную в аккумуляторах за время надводного хода.

Статья в тему:  Какие лодки и моторы подлежат регистрации

Описанная выше схема использовалась на протяжении нескольких десятилетий и с технической точки зрения показала довольно высокую надежность. Увы, в определенный момент она перестала удовлетворять требованиям военных по тактическим соображениям.

Главный недостаток дизель-электрического принципа состоит в том, что боевой корабль вынужден значительную часть времени проводить в надводном положении. А это разрушает главное преимущество подводных лодок – высокую скрытность операций и возможность нанесения внезапного удара по гораздо более вооруженному противнику.

До поры до времени с этим мирились. Однако ко времени Второй Мировой войны, когда применение подводных лодок, особенно в Атлантическом океане, приобрело невиданный размах, проблема встала «в полный рост». Не помогало даже то, что немецкие подводники всплывали для зарядки батарей преимущественно ночью. Широкое использование патрульной авиации, а также развитие методов радиолокации делало шедшие на дизельном ходу лодки довольно легкой мишенью. Да и простое обнаружение «волчьих стай» позволяло конвоям союзников планировать свои действия таким образом, чтобы минимизировать потери караванов.

Отчасти данная проблема решалась созданием так называемого шноркеля (в русском языке РДП, что означает «работа двигателя под водой»). Речь шла о выдвижном устройстве-трубе, которое позволяло лодке, движущейся на перископной глубине, использовать для работы дизельного двигателя атмосферный воздух. И заодно отводить выхлопные газы.
Однако всех проблем подводников это устройство не решало. Во-первых, выдвижная труба, хоть и в меньшей степени, но все же оставалась серьезным демаскирующим признаком. А во-вторых, шноркель должен был гарантировать, что через открывающиеся отверстия в лодку не будет поступать забортная вода.

Статья в тему:  Из какого дерева американские индейцы делали лодки

Увы, несмотря на установку соответствующих клапанов, гарантировать их стопроцентную надежность инженерам не удалось. Еще во время войны из-за несовершенства конструкции было потеряно несколько лодок. Да и в последующие годы такие инциденты также случались. Так, одной из основных версий гибели советской дизель-электрической лодки К-129 в 1968 году до сих пор считается «затопление лодки через шахту РДП при зарядке батарей по причине технической неисправности клапана и провал на запредельную глубину».

Да и сама концепция использования на лодке двух различных двигателей – для надводного и подводного хода – представляется не вполне удачной. В надводном положении кораблю приходится «таскать на себе» тяжелые и дорогие аккумуляторные батареи. А под водой – дизель. Это и удорожает, и утяжеляет конструкцию.

Все это предопределило необходимость перехода на новый тип энергоустановки – так называемый единый двигатель. Это агрегат, способный длительное время работать как в нормальной атмосфере, так и без доступа воздуха.

Справедливости ради следует сказать, что мысль о необходимости решения данной проблемы возникла в российском флоте еще в самом начале XX века. Однако в силу невозможности преодоления на том уровне развития науки некоторых технических проблем и в силу недостаточного внимания к ним эти работы не нашли широкого применения.

Замысел российских инженеров был довольно прост и интуитивно понятен. Наш соотечественник Степан Джевецкий в качестве основных энергоустановок использовал бензиновые двигатели, по тем временам довольно мощные – по 130 лошадиных сил. А для обеспечения их работы в подводном положении использовался подававшийся в машинное отделение сжатый воздух, хранившийся на лодке под давлением в 200 атмосфер. Выхлопные газы при этом выводились через специальную трубу, протянувшуюся внизу корпуса и оснащенную множеством отверстий, чтобы рассеять демаскирующие корабль пузыри.
Решить всех проблем, однако, таким образом не удалось. Пузырьки газа были довольно заметны. А сама конструкция оказалась исключительно сложной, а потому малонадежной. Но все же лодка Джевецкого решила главную задачу: она доказала принципиальную возможность использования двигателей внутреннего сгорания для обеспечения подводного хода лодок. И впоследствии такая идея была воплощена в жизнь.

Статья в тему:  Как называется лодка с вентилятором

Более широко работы по совершенствованию концепции «единого двигателя» развернулись после Первой Мировой войны, в 20-е годы прошлого столетия. Их вели как в Советском Союзе, так и в Германии. Первое, к чему пришли изобретатели – это отказ от сжатого воздуха. Совершенно очевидно: гораздо выгоднее хранить на лодке лишь реально необходимый для горения кислород.

Однако попытки хранения жидкого кислорода также сталкивались с многочисленными сложностями, так как уровень технологического развития той поры был еще недостаточен. Сложности вызывало даже изготовление емкостей для хранений окислителя. Так, использовавшиеся первоначально сплавы были признаны негодными. Кроме того, при заполнении цистерн (их разместили на экспериментальной лодке вместо аккумуляторных батарей) произошел ряд инцидентов, связанных с прорывом жидкого кислорода. Это неоднократно приводило к появлению трещин в корпусе лодки, что, очевидно, является для подводного корабля исключительно опасным.

Еще одним источником трудностей стала система подачи окислителя в двигатель. Пока из цистерн поступал скапливавшийся вверху газообразный кислород, система работала вполне исправно. Однако при попадании жидкого кислорода в трубах быстро появлялись ледяные углекислотные пробки. В итоге длительной надежной работы двигателя добиться не удавалось.

Именно поэтому в 30-е годы в СССР развернулась работа над «установкой РЕДО» (регенеративный единый двигатель особого назначения). В ее работе использовались собственные выхлопные газы. По похожей системе был устроен и появившийся чуть позже двигатель «ЕД-ХПИ» (единый двигатель с химическим поглотителем).

Статья в тему:  Раст сколько стоит лодка

В надводном положении двигатель РЕДО работал как любой другой мотор. В подводном же положении выхлопные газы, прошедшие очистку, направлялись обратно к дизелю. При этом к ним добавлялся газообразный кислород, что несколько сближало состав смеси с воздухом. А избыток выхлопных газов, в первую очередь углекислота, сжимался, после чего удалялся с лодки в жидком виде. Это позволяло решить проблему демаскировки.

В Германии к решению той же проблемы подошли с принципиально иной стороны. Инженер Гельмут Вальтер предложил использовать в качестве двигателя турбинную установку, а в качестве окислителя – перекись водорода вместо кислорода.

Первоначально предложенный им агрегат работал по самой простой схеме. Продукты реакции разложения высококонцентрированного раствора перекиси водорода просто подавались в турбину, а газы отводились за борт.

Это, однако, никак не решало вопрос демаскировки. Пузырьки газа, содержащего много кислорода, а потому не очень хорошо растворявшегося в воде, были весьма заметны. Поэтому у изобретателей появилась новая идея: использовать «лишний» кислород для дальнейшей реакции. В продукты разложения перекиси водорода попросту подавалось обычное органическое топливо, которое потом сжигалось.

Предварительные расчеты, проведенные немецкими конструкторами, позволили им сделать вывод, что лодка с подобной двигательной установкой сможет развивать невиданную по тем временам подводную скорость. Когда же опытный экземпляр был создан, действительность превзошла самые смелые ожидания. Скорость была столь высокой (она превысила 28 узлов), что для корабля пришлось создавать принципиально новую геометрию корпуса.

Статья в тему:  К чему снится перевернуться на лодке

Однако к этому моменту началась Вторая Мировая война. Вследствие многочисленных трудностей работы несколько застопорились. Лишь к самому концу войны немцы сумели спустить на воду несколько подводных лодок с такими установками. Проявить себя в боях им не довелось.

Скрыть свои достижения от американцев и англичан немцам не удалось. После войны лодки были доставлены в страны, где идею также попытались воплотить в жизнь. Однако и здесь, пока решались многочисленные технические трудности и строились опытные подлодки, история сделала крутой поворот. На флоте появилась принципиально новая энергетическая установка – ядерный реактор. В итоге США и Великобритания при развитии своих военно-морских сил отдали предпочтение им.

Тем не менее сама идея единого двигателя не умерла. В частности, была осуществлена попытка приспособить для целей подводного флота классическую водородную установку. В результате реакции водорода и кислорода, в ней образуется электрический ток, а в качестве «выбросов» – вода. При этом энергия вырабатывается без механического движения, что принципиально важно с точки зрения снижения другого ключевого демаскирующего фактора подлодок – шумности.

Стоимость водородного топлива военных, конечно, не смутила. Однако достичь необходимых тактико-технических характеристик, особенно в части скорости, таким боевым кораблям так и не удалось. Поэтому, хотя такие установки и используются (например, на современных немецких лодках), на практике их все равно приходится дополнять традиционным дизелем и аккумуляторными батареями.
Есть и другие концепции, призванные решить задачу создания подводной энергетической установки. Например, в Швеции применяется так называемый двигатель Стирлинга. Но это, как говорится, уже совсем другая история, ибо речь идет про двигатель не внутреннего, а внешнего сгорания.

Статья в тему:  Как установить лодку поперек течения

Как получают кислород в подводных лодках

§6.2 Получение кислорода.

Большое количество кислорода используется в промышленности, в медицине, в других областях человеческой деятельности. Промышленные количества кислорода получают из жидкого воздуха. Сначала воздух сжимают мощными компрессорами – при этом он, как любой сжимаемый газ, сильно нагревается. Если вам приходилось энергично накачивать велосипедную камеру, то вы должны помнить, что корпус насоса и шланг нагреваются довольно заметно.

Сжатый воздух в больших баллонах-емкостях охлаждается. Затем его подвергают быстрому расширению через узкие каналы, снабженные турбинками для дополнительного отбора энергии у молекул газа. Эти устройства называются турбодетандерами. При расширении любого газа всегда происходит его охлаждение. Если газ был сжат очень сильно, то его расширение может привести к такому сильному охлаждению, что часть воздуха сжижается. Жидкий воздух собирают в специальные сосуды, называемые сосудами Дьюара (рис. 6-2).

Рис. 6-2. Сосуд Дьюара для хранения и транспортировки сжиженных газов и его устройство. Из пространства между внутренней и внешней стенками сосуда откачан воздух. Вакуум практически не проводит тепло, поэтому жидкий газ, даже имея очень низкую температуру, может сохраняться в таком сосуде длительное время.

Как вы уже знаете, жидкий кислород кипит при более “высокой” температуре (-183 о С), чем жидкий азот (-196 о С). Поэтому при “нагревании” жидкого воздуха, когда температура этой очень холодной жидкости медленно повышается от -200 о С до -180 о С, прежде всего при -196 о С перегоняется азот (который опять сжижают) и только следом перегоняется кислород. Если такую перегонку жидких азота и кислорода произвести неоднократно, то можно получить весьма чистый кислород. Обычно его хранят в сжатом виде в стальных баллонах, окрашенных в голубой цвет. Характерная голубая окраска баллонов нужна для того, чтобы нельзя было спутать кислород с каким-нибудь другим сжатым газом.

Статья в тему:  Что такое анод на лодочном моторе

Аппаратура для промышленного получения кислорода, как мы видим, очень сложна и энергоемка. В лаборатории кислород удобнее получать из его соединений с другими элементами.

Чаще всего кислород получают нагреванием таких веществ (в состав которых кислород входит в связанном виде), как перманганат калия (марганцовка), хлорат калия (бертолетова соль), нитрат калия (селитра):

Водородная энергетика подводных лодок. Воздухонезависимая энергетическая установка – скрытность и автономность

Промышленная группа Naval Group разработала воздухонезависимый топливный элемент 2-го поколения FC2G AIP (Air-Independent Propulsion Fuel Cell 2nd Generation). AIP FC2G является дополнительным модулем к основной силовой установке подводной лодки и способен увеличить автономность субмарины в 3- 4 раза.

Как обеспечить главное преимущество подводной лодки – скрытность и длительное время ее нахождения в подводном положении? Кто-то делает турбину по замкнутому циклу, кто-то предлагает двигатель Стирлинга. Naval Group разработал воздухонезависимую установку в которой водород вырабатывается непосредственно на борту подлодки и используется для производства энергии.

Благодаря инновационному решению, разработанному Naval Group теперь любая подводная лодка может производить собственный водород. Отсутствие необходимости загружать или хранить водород на борту – главное преимущество разработки, с точки зрения безопасности при погружении.

Используя уникальные свойства специальных сплавов, специальная мембрана извлекает водород из синтетического газа для питания топливных элементов сверхчистым водородом без необходимости хранения. Водород, таким образом, вырабатывается на борту подлодки и используется для производства энергии, при этом система работает бесшумно.

Статья в тему:  Какая самая большая подводная лодка в мире

Для повышения долговечности топливные элементы снабжаются водородом, полученным на борту, и воздухом, что позволяет использовать стандартные технологии мембранных топливных элементов с воздушным протонным обменом

FC2G AIP: как это работает?

Этап 1: Генерация газа в реформаторе. Риформер, снабженный дизельным маслом, кислородом и паром (который рециркулирует в процессе), превращает эту смесь в богатый водородом синтетический газ. Этап 2: Увеличение выхода водорода и конверсия окиси углерода в реакторе. После риформера реактор запускает реакцию «вода-газ», превращая монооксид углерода в диоксид углерода вместе с превращением воды в водород. Следовательно, это увеличивает содержание водорода в синтетическом газе до максимально возможного. Этап 3: Очистка водорода в мембране. Используя уникальные свойства специальных сплавов, мембрана извлекает водород из синтетического газа для питания топливных элементов сверхчистым водородом без необходимости хранения. navalnews.com

Процесс производства водорода основывается на трех основных этапах: подача дизельного масла из топливных баков, кислорода (из модуля хранения кислорода FC2G) и пара, последний рециркулируется в процессе, риформер превращает эту смесь в богатый водородом синтетический газ, содержащий водород, двуокись углерода и окись углерода плюс вода в паровой фазе.

Остаточный газ выбрасывается в море, где он мгновенно растворяется. Синтетический газ затем проходит в реактор сдвига, где пар приводит в действие реакцию «сдвиг вода-газ», которая выполняет конверсию оксида углерода, генерируя водород, диоксид углерода и воду. Он увеличивает содержание водорода в синтетическом газе до максимально возможного, наряду с почти полным удалением окиси углерода. Реактор сдвига характеризуется высокой компактностью и термическим КПД.

Статья в тему:  Как обкатывать лодочный мотор тохатсу

FC2G AIP поставляется в виде модуля, разделенного на две секции: кислородный и энергетический. Первый предназначен для хранения жидкого кислорода, который питает как систему AIP, так и обеспечивает регенерацию подводной атмосферы, а второй содержит четыре основных элемента модуля FC2G AIP: риформер, сменный реактор, очищающую мембрану и PEM (Proton). Все компоненты встроены в специальную секцию с эластичным креплением и подвесными люльками, чтобы избежать какого-либо воздействия на акустические характеристики субмарины. Модуль FC2G AIP также включает в себя проход для персонала, обеспечивающий доступ к другим отсекам подводных лодок, а также к самому модулю для проведения работ по техническому обслуживанию.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: