2 просмотров

Как подводные лодки не тонут

Почему подводные лодки вообще должны всплывать на поверхность? Разве они не могут оставаться под водой бесконечно?

Подводные лодки – это огромные морские машины: они ныряют под воду и остаются там в течение длительных периодов времени, проводя военные операции или другие формы подводных исследований. Самое большое.

Содержание

  • Почему дизельные подводные лодки иметь всплыть?
  • Перезарядка батарей дизельных подводных лодок
  • Трубка
  • Связь
  • Пайки и припасы
  • Обслуживание
  • “Человеческий” угол

Подводные лодки – это огромные морские машины: они ныряют под воду и остаются там в течение длительных периодов времени, проводя военные операции или другие формы подводных исследований. Самое большое преимущество, которое они предлагают, особенно в милитаристском контексте, заключается в том, что они могут спрятаться под водой, подальше от подозрительных глаз врага. Фактически, это главная причина, по которой они были впервые использованы в мировых войнах немецким флотом, чтобы нанести ущерб кораблям союзников.

Однако в тот момент, когда подводная лодка всплывает на поверхность, то есть появляется на поверхности воды, она становится гораздо более легкой целью для мощных орудий и пушек атакующих и эсминцев противника. Вот почему часто говорят, что если вы можете успешно заставить подводную лодку всплыть на поверхность, вы уже выиграли половину битвы.

При этом, если появление на поверхности воды настолько опасно для подводной лодки и ее экипажа, зачем ей вообще всплывать на поверхность? Я имею в виду, что мешает подводной лодке оставаться под водой неопределенное время? Разве он не может оставаться под водой на протяжении всей миссии?

Статья в тему:  Как правильно перевозить лодку пвх на прицепе

Чтобы понять ответ на этот вопрос, полезно знать кое-что о подводных лодках.

Подводные лодки можно разделить на два типа в зависимости от типа двигателя, на котором они работают: дизель-электрический или ядерный.

Подводные лодки, работающие на дизельных электрических двигателях, принято называть дизельными подводными лодками или просто дизельными подводными лодками. Точно так же подводные лодки, которые используют энергию, вырабатываемую ядерным реактором на борту, называются атомными подводными лодками или просто атомными подводными лодками.

Вне зависимости от типа подводные лодки обычно периодически всплывают на поверхность, но причины для этого в обоих случаях разные.

Почему дизельные подводные лодки иметь всплыть?

Дизельные двигатели вырабатывают энергию в процессе внутреннего сгорания (слово «внутреннее» просто означает, что дизельное топливо сгорает. внутри основная часть двигателя). Обратите внимание, что двигатели внутреннего сгорания отличаются от двигателей внешнего сгорания.

Теперь вы можете вспомнить из школьного урока естествознания, что горение – это просто процесс сжигания чего-либо в присутствии кислорода. «Присутствие кислорода» здесь очень важно, особенно в случае больших металлических судов, работающих под водой, вдали от прямого и свежего источника кислорода.

Перезарядка батарей дизельных подводных лодок

Как следует из названия, дизельная подводная лодка работает на дизельном двигателе, а это значит, что она должна подниматься на поверхность (или хотя бы на перископную глубину). Высота перископов на подводных лодках может достигать 18 метров (около 60 футов). Когда подводная лодка погружается на глубину, равную высоте перископа, считается, что подводная лодка находится на глубине перископа.

Статья в тему:  Какую надувную лодку выбрать украине

Подводная лодка выходит на поверхность раз в несколько дней (а то и чаще) не только для того, чтобы получить свежий запас атмосферного кислорода над поверхностью воды, но и для утилизации отработанных газов, которые она производит на борту.

Трубка

Существует устройство, известное как шноркель (англичане называют его «фырканьем»), которое позволяет подводным лодкам работать под водой, при этом набирая воздух над поверхностью. Когда подводная лодка выходит на поверхность, ее дизельные двигатели работают и вырабатывают энергию, которая используется для подзарядки батарей, которые в конечном итоге приводят в действие подводную лодку.

Атомные подводные лодки, с другой стороны, полагаются на энергию, вырабатываемую ядерным реактором на борту. Реактор вырабатывает мощность, достаточную для работы всех электронных и электрических систем на борту, а также систем жизнеобеспечения экипажа. Следовательно, в отличие от дизельных подлодок, атомные подлодки могут работать дни или даже недели, не всплыв ни разу. Фактически, теоретически ядерный реактор на борту подводной лодки производит достаточно энергии, чтобы управлять подводной лодкой в ​​течение нескольких десятилетий!

Связь

Радиосигналы плохо проходят под водой, особенно на глубинах, на которых подводные лодки обычно работают во время миссии. Следовательно, как атомные, так и дизельные подводные лодки должны всплывать на поверхность, чтобы поддерживать связь со своей базой, получать приказы и / или передавать важную информацию.

Пайки и припасы

Атомная подводная лодка может оставаться и работать под водой в течение пары десятилетий, при условии, что она снабжена достаточным количеством припасов и рационов для экипажа на борту, чтобы продержаться так долго.

Статья в тему:  Как называется плоская лодка с веслом

Очевидно, это далеко не область возможного, поэтому подводные лодки должны всплывать, чтобы загрузить свежие припасы (с другого судна) и продолжить, особенно если это долгая миссия.

Обслуживание

Какой бы прочной и надежной она ни была, подводная лодка, в конце концов, остается просто машиной. Он имеет ряд систем различных типов – электрических, механических, электронных, гидравлических и т. Д., Которые позволяют ему работать под водой. Иногда у некоторых из этих систем возникают проблемы, которые бортовой экипаж не может исправить на ходу. Если какая-либо из этих проблем является критической, капитан обычно приказывает поменять поверхность субмарины, чтобы можно было произвести существенный ремонт.

“Человеческий” угол

Не будем забывать, что подводная лодка – это укомплектованный Судно, то есть им управляют люди. Иногда член экипажа получает травму или заболевает, и ему требуется надлежащая медицинская помощь. Также может быть какая-то чрезвычайная ситуация, связанная с людьми, которая потребует незапланированного восстановления поверхности подлодки.

Кроме того, люди – социальные животные. Oни иметь вести «социальную жизнь», т. е. разговаривать с друзьями, встречаться с людьми, посещать места, есть различную еду, зацикливаться на телепередачах, играть в видеоигры, гулять, долго ездить множество других вещей для поддержания их рассудка.

Чтобы команда не сошла с ума из-за недельного пребывания в металлической трубе, полностью оторванной от семьи, друзей и остального мира, миссии на подводных лодках планируются таким образом, чтобы «вращающийся», означающий, что ни один экипаж не должен нести бремя пребывания под водой «слишком долго». Чтобы это произошло, подводные лодки должны всплыть на поверхность, чтобы существующий экипаж мог высадиться, пока новый экипаж садится на подлодку для следующего этапа текущей миссии.

Статья в тему:  Можно ли заводить лодочный мотор без винта

Почему подводная лодка не тонет

муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 20

г. Минеральные Воды

Тема: “Почему подводная лодка не тонет?”

Автор работы: Гиричев Серафим 2 «б» класс

Научный руководитель и консультант:

г. Минеральные Воды

2. История развития подводного кораблестроения;

3. Механизм погружения и всплытия подводной лодки;

4. Экспериментальное доказательство механизма погружения и всплытия подводной лодки;

6. Список источников.

Я очень люблю строить корабли и потом пускать их на воду. Вместе с папой мы собираем модели парусников. (См.7.Приложения Фото 1-4) И он мне объяснил, что корабли не тонут, потому что воздух внутри корабля держит его на плаву. Закон Архимеда гласит, что на погруженное в воду тело действует сила, равная весу вытесненной им воды. Корабль вытесняет воды так много, что возникает большая выталкивающая сила, которая и держит его на плаву. Но способность держаться на плаву зависит также от плотности материала, из которого построено судно, то есть от отношения его массы к объему. Корпус корабля делают из металла (например, железа) — это тяжелый материал. Но внутри корабля находится заполненное воздухом полое пространство, поэтому средняя плотность корабля оказывается ниже плотности воды, и он не тонет.

А потом по телевизору я увидел огромную подводную лодку с командой из десятков человек способные месяцами находиться под водой. И мне стало интересно, как же может подводная лодка погружаться в воду, свободно плавать и не тонуть?

Статья в тему:  Как завести лодочный мотор без стартера

Объект исследования: подводная лодка

Предмет исследования: механизм погружения и всплытия подводной лодки

– Беседы с взрослыми

– Работа с компьютером

– Проведение опытов, экспериментов

Цель: экспериментальным путем обосновать механизм погружения и всплытия подводной лодки с точки зрения физики.

– узнать историю развития подводного кораблестроения

– создать макет подводной лодки

– объяснить механизм погружения и всплытия подводной лодки

– опытным путем показать механизм погружения и всплытия подводной лодки

Мы предположили, что как и всякое физическое тело, подводная лодка подчиняется закону Архимеда, то механизм её погружения и всплытия можно показать в домашних условиях.

2.История развития подводного кораблестроения.

2.1.Идея подводного судна уходит своими корнями в античные времена. Существуют предположения, что в IV веке до н. э. Александр Македонский использовал нечто принципиально похожее на водолазный колокол в разведывательных целях, о чём сохранились свидетельства на картинах более позднего времени. (См.7.Приложения Фото 5)

2.2.Первым успешно функционирующим подводным судном стала вёсельная подводная лодка голландского механика и физика начала XVII века Корнелия Ван-Дреббеля, построенная в Лондоне на реке Темзе, для 12 гребцов и 3 офицеров; хроника говорит, что сам король Иаков I был в числе этих офицеров. Его деревянная лодка представляла собой разновидность водолазного колокола, обтянутая снаружи промасленной кожей, могла перемещаться с помощью весел в подводном положении на небольшие расстояния. Судно могло находиться под водой несколько часов на глубине до 5 метров. Для поглощения испорченного дыханием воздуха изобретатель приготовлял жидкость, подробности рецепта которой не сохранились. (См.7.Приложения Фото 6-8)

Статья в тему:  Как правильно заякорить резиновую лодку

2.3.В России 1718 года, плотник Ефим Никонов из подмосковного села Покровское подал челобитную царю Петру I, в которой он предложил проект «Потаенного судна», который фактически представлял собой проект первой отечественной подводной лодки. Спустя несколько лет, в 1724 году на Неве творение Никонова, было испытано, да неудачно, поскольку «при спуске у того судна повредилось дно». При этом Никонов едва не погиб в затопленной лодке и был спасен при личном участии самого Петра. За неудачу царь велел изобретателя не корить, а дать ему возможность исправить недочеты. Но вскоре Петр I умер, и в 1728 году Адмиралтейств-коллегия после очередных неудачных испытаний распорядилась работы над «потаенным судном» прекратить. Самого же малограмотного изобретателя сослали работать плотником на верфи в Астрахань. (См.7.Приложения Фото 9-12)

2.4.Первую подводную лодку, получившей военное применение, спроектировал школьный учитель в 1776 году в США Д. Бушнелл одноместную субмарину из дерева, обшитого листами меди. Ее яйцевидный корпус больше походил на бочку, но имел башенку с иллюминаторами, два винта в виде винтов Архимеда: один горизонтальный, другой вертикальный, и маленький руль. Ее назвали «Черепаха», по-английски — «Тартл». Снизу закрепили якорь и груз для устойчивости — в морской терминологии это называется остойчивость. Для любого судна важно, когда на море качка, не перевернуться, а как ванька-встанька возвращаться в первоначальное положение из крена. Для погружения под воду небольшой бак заполняли водой, а для всплытия воду откачивали ручным насосом. Бак служил балластной цистерной. Субмарина приводилась в движение гребными винтами, которые вращал ногами подводник, нажимая на педали, как это делает велосипедист. На башенке была установлена труба, соединяющая внутреннюю полость с атмосферой. Следовательно, погружаться ниже этой трубы «Тартл» не могла. Субмарина была вооружена миной, начиненной 65 кг пороха, который поджигался запалом с помощью часового механизма. Предусматривалось, что подводник должен был приблизиться к стоящему вражескому кораблю, буравом просверлить отверстие в его деревянном днище и прикрепить к днищу мину, прикрепленную к бураву, затем запустить часовой механизм и отойти на безопасное расстояние. (См.7.Приложения Фото 13-14)

Статья в тему:  Как будет лодка на беларускай мове

2.5.Огромный вклад в развитие подводного флота внес русский кораблестроитель, инженер, конструктор, изобретатель, предприниматель, путешественник, коллекционер – Степан Карлович Джевецкий, который прославился своими трудами в области судостроения, авиации и морской техники. Джевецкий является создателем первых боевых подводных лодок, оборудования и вооружения для них. Он разработал много нововведений:

• использование водяного насоса для откачки воды

• впервые снабдил свою лодку электродвигателем

• вооружение лодки состояло из мины с резиновыми присосками и запалом, которое позволяло активировать мину в нужный момент. (См.7.Приложения Фото 15)

2.6.Первая в мире дизельная подводная лодка «Минога» была построена в России в Петербурге в 1908 году по проекту Ивана Григорьевича Бубнова. Длина «Миноги» — 32 м. Скорость под водой – 8, 5 км/ч. Вооружение – две торпеды. Она была взята на вооружение Балтийского флота. Дизельмоторы, изготовленные заводом «Людвиг Нобель» для «Миноги», имели очень важное новшество – реверсионное устройство, позволяющее лодке менять ход с переднего на задний, но, к сожалению, это было возможно только без нагрузки. Вооружение «Миноги» состояло из двух трубчатых внутренних торпедных аппаратов. На верхней палубе позади рубки был установлен пулемет. Экипаж «Миноги» насчитывал 22 человека, в том числе два офицера – командир лодки и его помощник. (См.7.Приложения Фото 16-18)

2.7.В дальнейшем конструкции подводных лодок претерпели много изменений. Лучшие достижения науки и техники были использованы для их усовершенствования, вплоть до установки на них атомных двигателей. (См.7.Приложения Фото 19-22)

Статья в тему:  Как выбрать мощность лодочного мотора

В Санкт-Петербурге открыт комплекс боевой подводной лодки Второй Мировой войны Д-2 “Народоволец”, где можно походить по отсеками и узнать её устройство и условия жизни экипажа. Все отсеки подводной лодки, ее внешний облик воссозданы такими, какими они были в годы войны. Она состоит из прочного и легкого корпусов. Все основные агрегаты и механизмы расположены в прочном водонепроницаемом корпусе. На палубе надстройки размещено 100-мм орудие. Лодка установлена на бетонных киль-блоках и соединена со зданием берегового павильона. (См.7.Приложения Фото 23-26)

3. Механизм погружения и всплытия подводной лодки.

Попробуем разобраться в механизме погружения и всплытия подводной лодки с точки зрения физики.

Как и всякое физическое тело, подводная лодка подчиняется закону Архимеда: тело, погруженное в воду, теряет в своем весе столько же, сколько весит вытесненный телом объем воды. На этом законе основано главное свойство любого корабля — его плавучесть, способность удерживаться на поверхности воды.

Чтобы подводная лодка могла погружаться, всплывать или держаться под водой, она должна обладать способностью менять свою плавучесть. Это достигается очень простым способом — лодка оборудована специальными цистернами, которые, то заполняются водой, то вновь опорожняются.

Для подводной лодки плавучесть бывает:

Положительная – надо освободить цистерны от воды – лодка всплывет;

Отрицательная – надо заполнить цистерны водой – лодка будет погружаться – опустится на дно;

Статья в тему:  К чему снится плыть на большой лодке

Нулевая – необходимо уравнять вес подводной лодки и вес вытесняемого ею объема воды – лодка будет «висеть» на любой глубине.

Так как регулировка погружения с помощью цистерн никогда не может быть точной, то маневрирование лодки в плоскости достигается при помощи горизонтальных рулей.

4. Экспериментальное доказательство механизма погружения и всплытия подводной лодки.

Подводная лодка погружается под воду при заполнении водой специальных камер — балластных цистерн. Когда же ей нужно всплыть, в цистерны нагнетается сжатый воздух, и вода вытесняется. Меняя количество воздуха в балластных цистернах, лодка меняет глубину погружения.

Для доказательства данного механизма я решил провести опыт в домашних условиях.

Представляю вашему вниманию.

Возьмем две пластиковых бутылки, большую и маленькую, надувной шарик, шланг, резиновое кольцо и изоленту. (См.7.Приложения Фото 27) В маленькой бутылке сделаем много отверстий, диаметром 3-4 мм. (См.7.Приложения Фото 28) В пробке маленькой бутылки проделаем отверстие для шланга. (См.7.Приложения Фото 29) Вставим шланг и закрепим на нём надувной шарик. (См.7.Приложения Фото 30) После этого протолкнем шарик внутрь бутылки, закрутим пробку и закрепим шланг. (См.7.Приложения Фото 31) Теперь осталось только соединить обе бутылки изолентой. (См.7.Приложения Фото 32-33) Заполнили большую бутылку водой, и поместили в нее груз, в нашем случае были камушки, и опустили нашу «подводную лодку» в воду. Маленькая бутылка наполнилась водой и она легла на дно. «Подводная лодка» приобрела отрицательную плавучесть. (См.7.Приложения Фото 34) Чтобы наша модель всплыла, через шланг под давлением мы стали наполнять маленькую бутылку воздухом, и вода из нее стала выливаться. (См.7.Приложения Фото 35) И вот чудо, наша лодка всплыла на поверхность! «Подводная лодка» приобрела положительную плавучесть. (См.7.Приложения Фото 36)

Статья в тему:  Как переделать лодочный мотор сузуки 9.9 на 15 видео

Наша гипотеза о том, что механизм погружения и всплытия подводной лодки можно показать в домашних условиях, оправдалась. В будущем я хотел бы провести опыт по доказательству нулевой плавучести. Я пробовал, но пока мне это не удалось.

Конечно, есть еще много того, что я не понимаю, например физические понятия, законы, формулы, но, думаю, в старших классах я смогу разобраться в этом вопросе подробнее.

Я считаю, что опыт моей работы будет интересен многим ребятам. Этот эксперимент может провести любой мой одноклассник, используя подручные бытовые предметы. Мой проект показал мне, что физика начинается с внимательности и любопытства к простым, привычным для нас предметам и состояниям.

Плавучесть

Почему одни вещества тонут в воде, а другие нет? И почему есть так мало веществ, способных плавать в воздухе (т. е. летать, см. статью «Полёт«)? Понимание законов плавучести (и погружения) позволяет инженерам строить корабли из металлов, которые тяжелее воды, и конструировать дирижабли и воздушные шары, способные плавать в воздухе. В спасательный жилет накачивают воздух, поэтому он помогает человеку держаться на воде.

Почему предметы плавают

Если погрузить тело в воду, оно вытеснит некоторое количество воды. Тело занимает место, где раньше была вода, и уровень поды поднимается. Если верить легенде, древнегреческий ученый Архимед (287 — 212 до н.э.), находясь в ванне, догадался, что по­груженное тело вытесняет равный объем воды. На средневековой гравюре изображен Архимед, совершивший свое открытие. Сила, с которой вода выталкивает погруженное и нее тело, называется силой выталкивания. Когда она равна весу тела, тело плавает и не тонет. Тогда вес тела равен весу вытесненной им воды. Пластмассовый утёнок очень лёгкий, поэтому достаточно небольшой силы выталкивания, чтобы удержать его на поверхности. Сила, направленная вниз (вес тела) за­висит от плотности тела. Плотность представляет собой отношение массы тела к его объему. Стальной шар тяжелее яблока того же размера, так как он плотнее. Частицы вещества в шаре упакованы более плотно. Яблоко может плавать в воде, но стальной шар тонет.

Статья в тему:  Как переделать лодочный мотор сузуки 9.9 на 15 видео

Чтобы тело не тонуло, его плотность должна быть меньше плотности воды. В противном случае силы выталкивания воды недостаточно, чтобы удержать тело на поверхности. Относительной плотностью тела называется его плотность по от­ношению к плотности воды. Относительная плотность воды равна единице, значит, если относительная плотность тела больше 1, оно утонет, а если меньше — будет плавать.

Закон Архимеда

Закон Архимеда гласит, что сила выталкивания равна весу жидкости, вытесненной погруженным в неё телом. Если сила вытал­кивания меньше веса тела, то оно тонет, если она равна весу тела, оно плавает.

Как плавают корабли

В наши дни корабли делают из стали, ко­торая в 8 раз плотнее воды. Не тонут же корабли потому, что их общая плотность меньше плотности воды. Корабль — это не цельный кусок стали (подробнее о стали в статье «Железо, сталь и прочие металлы«). В нем множества полостей, поэтому его вес распределяется по большому пространству, что и приводит к небольшой общей плотности. «Морской гигант» — одно из самых больших судов мира – весит 564 733 тонны. Благодаря большим размерам выталкивающая сила для него очень велика.

Если хотите увидеть, как действует сила выталкивания, бросьте в сосуд с водой глиняный шарик. Он утонет, и уровень воды поднимется. Отметьте фломастером новый уровень воды. Теперь слепите из этой же глина лодочку и осторожно опустите её на воду. Как видите, вода поднялась ещё выше. Лодочка вытесняет больше воды, чем шарик, а значит, и сила выталкивания больше.

Статья в тему:  Как правильно заякорить резиновую лодку

Грузовые марки

Грузовые марки — это линии, начерченные на борту судна. Они показывают, сколько груза судно может выдержать тех или иных условиях. Так, поскольку холодная вода плотнее теплой, она выталкивает судно сильнее. Значит, судно может взять па борт больше груза. Солёная вода плотнее пресной, следовательно, в пресной воде судно следует меньше нагружать. Изобрел грузовые марки Сэмюэл Плимсолл (1824-1898). Когда судно погружается в воду до соответствующей линии (см. рис.), оно считается полностью нагруженным. Значение буквенных символов: TF – пресная вода тропики, SF – пресная вода летом, T – солёная вода тропики, S – солёная вода летом, W – солёная вода зимой, WNA – Сев. Атлантика зимой.

Воздухоплавание

Тела могут летать по тем же причинам, по каким они плавают в воде. На них действу­ет сила выталкивания воздуха. Плотность воздуха так мала, что в нем могут плавать очень немногие тела. Это, на­пример, баллоны с горячим воздухом, который менее плотен, чем холодный. Воздушные шары можно также наполнить гелием или другими газами, которые легче воз­духа.

Суда и лодки

Когда-то лодки и суда плавали, повинуясь силе ветра или мускульной силе человека. Создание двигателя позволило кораблестроителям использовать винты, толкающие судно сквозь толщу воды. В последнее время появились суда на подводных крыльях. «Великобритания» (построен в 1843 году) – первый железный корабль с гребным винтом. Его приводил в движение паровой двигатель. Корабль был также оснащён парусами. Контейнеровозы перевозят грузы в больших металлических ящиках. Их можно быстро погрузить на судно и сгрузить обратно при помощи кранов. Одно судно может принять на борт до 2000 контейнеров. Танкеры перевозят нефть и про чие жидкости в баках, расположенных в трюмах. Некоторые танкеры в 20 раз длиннее теннисного корта.

Статья в тему:  Как будет лодка на беларускай мове

Подводные лодки

Подводные лодки погружаются и всплывают, изменяя свою относительную плотность. У них на борту есть большие контейнеры – балластные резервуары. Когда из них уходит воздух и внутрь закачивается вода, плотность лодки увеличивается и она погружается. Чтобы всплыть на поверхность, экипаж удаляет из резервуаров воду и накачивает туда воздух. Плотность вновь уменьшается и лодка всплывает. Балластные резервуары помещаются между внешним корпусом и стенками внутреннего отсека. Экипаж живёт и работает во внутреннем отсеке. Подводная лодка оснащена мощными винтами, которые позволяют ей двигаться сквозь толщу воды. На некоторых лодках установлены атомные реакторы (см. статью «Ядерная энергия и радиоактивность«).

Почему корабли не тонут? Описание, фото и видео

С самого зарождения кораблестроения люди прилагают массу усилий, стараясь создать корабли, которые не тонут. Первые деревянные суда были легче воды. Но развитие науки и знание законов физики позволило строить и стальные, и даже железобетонные суда.

Железобетонные корабли строились в Северной Америке в первой половине XX века, когда во время двух мировых войн ощущался дефицит стали.

Кораблю помогают не тонуть законы физики

Плавучесть судна определяется законом Архимеда: жидкость выталкивает тело с силой, равной весу жидкости в объеме погруженной в нее части тела. Основная хитрость здесь заключается в объеме – чем больше объем корабля, тем более толстыми можно сделать его металлические борта и тем больше дополнительного груза он может взять на борт, оставаясь при этом на плаву. Так получается потому, что основной внутренний объем корабля заполнен воздухом, который в 825 раз легче воды. Именно воздух придает плавучесть кораблю.

Статья в тему:  Как выбрать мощность лодочного мотора

По этому же принципу возможно погружение и всплытие подводных лодок – при погружении балластные цистерны заполняются водой, лодка теряет плавучесть и погружается. При всплытии – в них подают воздух под давлением, вытесняющий воду. По этому же принципу плавает в ванне металлический тазик – внутри него находится воздух, занимающий большую часть всего объема тазика. Если же внутренний объем тазика заполнить камнями или металлом – он утонет, потому что вес его станет слишком большим.

Инженерные решения-остойчивость корабля

На плавучесть корабля, его способность сопротивляться силам ветра и волн действует принцип рычага. Если тазик, который спокойно плавает в ванне, запустить в речку – он вскоре наберет воды и утонет, потому что его будет наклонять ветер и захлестывать волны.

малая остойчивость

С кораблем тоже может случиться нечто подобное, если у него малая остойчивость. В истории бывали случаи, когда сотни пассажиров, собравшиеся у одного борта – вызывали крен судна и его затопление. Много кораблей гибло во время штормов из-за того, что их переворачивал ветер и волны.

Остойчивость судна

Остойчивость судна – это его способность сохранять устойчивое положение в воде. Зависит она от места, где находится центр тяжести судна. Чем он ближе к поверхности – тем проще перевернуть корабль и тем меньше остойчивость.

Именно поэтому у современных кораблей самые тяжелые агрегаты – ходовые двигатели, генераторы, танки с запасами воды и топлива находятся в нижней части. Там же располагаются грузовые трюмы. Моряки знают, что на полностью загруженном судне – качка ощущается намного меньше, чем на пустом.

Статья в тему:  Как правильно перевозить лодку пвх на прицепе

Для смещения центра тяжести как можно ниже, конструкторы специально утяжеляют киль с помощью свинцовых накладок. В спортивных судах утяжеленный киль вообще крепится под судном отдельно на балках и называется выносным.

На остойчивость сильно влияет и форма борта – наименьшей обладают суда с полукруглым дном, наибольшей – спортивные тримараны, имеющие два выносных корпуса-опоры по бокам. Действительно, наличие дополнительных опор в верхней части борта помогает сохранять остойчивость, мешая судну накреняться. Это знали еще в древности и прикрепляли вдоль верхней части борта лодки связки сухого камыша. А современные туристы с этой целью используют надувные баллоны, привязывая их по бортам байдарок.

Обязательные правила морехода

Чтобы избежать смещения центра тяжести, при загрузке современных кораблей используются компьютерные программы, помогающие просчитать – куда и сколько груза можно поместить, чтобы сохранить мореходные качества судна. Ответственным за правильное размещение груза является старший помощник капитана. Он командует погрузкой и в соответствии с расчетами, самые тяжелые грузы размещаются в трюмах, а более легкие – на палубе. Груз на корабле обязательно «найтовится», то есть привязывается. Это нужно, чтобы во время шторма он не перекатывался по трюмам и не изменял центр тяжести судна.

Весь корпус корабля разделен на герметичные отсеки. В нормальном состоянии перегородки между отсеками открыты. Когда корабль получает пробоину – тот отсек, где она расположена, перекрывается герметичными перегородками, чтобы вода не могла заполнить весь корпус.

Статья в тему:  Как завести лодочный мотор без стартера

Опасно во время шторма разворачивать корабль «лагом к волне», то есть боком. Слишком велика вероятность, что сильная волна перевернет корабль. Также опасна и волна в корму. Поэтому часто океанские суда во время сильных штормов начинают двигаться носом против волн, уходя с намеченного курса – это самый безопасный для корабля способ пережить непогоду. И только после окончания шторма они возвращаются на нужный курс.

Плавучесть и остойчивость судна – это основные его качества, обеспечивающие безопасность. Поэтому правила, помогающие сохранить их – обязательны к соблюдению. А конструкторские решения, способствующие их улучшению, всегда приветствуются.

Почему корабли не тонут – интересное видео

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: