1 просмотров

Как найти скорость лодки по течению и против течения

Задачи на движение по воде

Скорость по течению реки равна сумме собственной скорости транспортного средства и скорости течения реки

Чтобы найти скорость против течения, нужно отнять от собственной скорости транспортного средства скорость течения реки

Катер прошел против течения реки $120$ км и вернулся обратно, затратив на обратный путь на $4$ часа меньше времени. Найдите скорость катера в стоячей воде, если скорость течения реки $4$ км/ч. Ответ дайте в км/ч.

Для начала необходимо за «х» взять неизвестную. В нашем случае(и чаще всего) за «х» берется скорость.

Пусть $х$ км/ч – собственная скорость катера, тогда $(х+4)$ км/ч – скорость катера по течению; $(х-4)$ км/ч – скорость катера против течения.

Создаем стандартную таблицу и столбец $«v»$ заполняем данными с неизвестными.

$S$(км)$v$(км/ч)$t$(ч)
По течению$(x+4)$
Против течения$(x-4)$

Так как расстояние, которое катер проплыл по течению и против течения одинаково и равно $120$ км, заполняем столбец $«S»$

$S$(км)$v$(км/ч)$t$(ч)
По течению$120$$(x+4)$
Против течения$120$$(x-4)$

Третий столбец заполняем по формуле $t=/$

$S$(км)$v$(км/ч)$t$(ч)
По течению$120$$(x+4)$$<120>/<(х+4)>$
Против течения$120$$(x-4)$$<120>/<(х-4)>$

Именно содержимое третьего столбца будем использовать для составления уравнения к задаче. По условию задачи разница между временами движения против течения и по течению равна $4$ часа, следовательно, из большего времени отнимаем меньшее время и все это равно разнице времен.

Решим полученное дробно рациональное уравнение, для этого перенесем все слагаемые в левую часть.

Приведем дроби к общему знаменателю $(х-4)(х+4)$, тогда к первой дроби дополнительный множитель равен $(х+4)$, ко второй $(х-4)$, а к третьему слагаемому $(х+4)(х-4)$. Получаем:

Далее проговариваем: дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

Найдем сначала корни знаменателя (ОДЗ дроби)

Найдем корни числителя.

Для этого раскроем скобки и приведем подобные слагаемые.

Разделим обе части уравнения на $(-4)$

Так как за «х» мы брали собственную скорость катера, а она отрицательной быть не может, следовательно, нам подходит только корень $х=16$ км/ч

От пристани $А$ к пристани $В$, расстояние между которыми равно $70$ км, отправился с постоянной скоростью первый теплоход, а через $1$ час после этого следом за ним, со скоростью, на $8$ км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт $В$ оба теплохода прибыли одновременно.

Пусть $х$ км/ч- это скорость первого теплохода, тогда $(х+8)$ км/ч –это скорость второго теплохода.

Составим таблицу, в которой заполним столбцы путь $«S»$ и скорость $«v»$ по условию задачи, а третий столбец время $«t»$ заполним по формуле $t=/$

$S$(км)$v$(км/ч)$t$(ч)
Первый теплоход$70$$x$$<70>/<х>$
Второй теплоход$70$$(x+8)$$<70>/<(х+8)>$

Так как второй теплоход выехал на час позже, то время его в пути на час меньше относительно времени первого теплохода. Составим и решим уравнение: из большего времени отнимаем меньшее время и все это равно разнице времен

Приводим дроби к общему знаменателю

Найдем сначала корни знаменателя(ОДЗ дроби)

Найдем корни числителя

По т.Виета $х_1+х_2=-8$

$х_1=-28; х_2=20$, первый корень нам не подходит, так как он отрицательный, следовательно скорость первого теплохода равна $20$ км/ч.

Задачи на движение

Скорость тела. Средняя скорость тела
Движение по реке. Скорость течения реки
Движение по кольцевым трассам

Скорость тела. Средняя скорость тела

Решение задач на движение опирается на хорошо известную из курса физики формулу

позволяющую найти путь S , пройденный за время t телом, движущимся с постоянной скоростью v .

Сразу же сделаем важное

Замечание 1 . Единицы измерения величин S , t и v должны быть согласованными. Например, если путь измеряется в километрах, а времяв часах, то скорость должна измеряться в км/час.

В случае, когда тело движется с разными скоростями на разных участках пути, вводят понятие средней скорости , которая вычисляется по формуле

Например, если тело в течение времени t1 двигалось со скоростью v1 , в течение времени t2 двигалось со скоростью v2 , в течение времени t3 двигалось со скоростью v3 , то средняя скорость

(2)

Задача 1 . По расписанию междугородный автобус должен проходить путь в 100 километров с одной и той же скоростью и без остановок. Однако, пройдя половину пути, автобус был вынужден остановиться на 25 минут. Для того, чтобы вовремя прибыть в конечный пункт, водитель автобуса во второй половине маршрута увеличил скорость на 20 км/час. Какова скорость автобуса по расписанию?

Решение . Обозначим буквой v скорость автобуса по расписанию и будем считать, что скорость v измеряется в км/час. Изобразим данные, приведенные в условии задачи 1, на рисунке 1.

– время движения автобуса по расписанию (в часах);

– время, за которое автобус проехал первую половину пути (в часах);

v + 20 – скорость автобуса во второй половине пути (в км/час);

– время, за которое автобус проехал вторую половину пути (в часах).

В условии задачи дано время остановки автобуса – 25 минут. Его необходимо выразить в часах, чтобы все единицы измерения были согласованными:

Теперь можно составить уравнение, исходя из того, что автобус прибыл в конечный пункт вовремя, а, значит, время, которое он был в пути, плюс время остановки должно равняться времени движения автобуса по расписанию:

Решим это уравнение:

По смыслу задачи первый корень должен быть отброшен.

Задача 2. (МИОО) Первый час автомобиль ехал со скоростью 120 км/час, следующие три часа – со скоростью 105 км/час, а затем три часа – со скоростью 65 км/час. Найдите среднюю скорость автомобиля на протяжении всего пути.

Решение . Воспользовавшись формулой (2), получаем

Ответ . 90 км/час.

Задача 3 . Первую половину пути поезд шел со скоростью 40 км/час, а вторую половину пути – со скоростью 60 км/час. Найдите среднюю скорость поезда на протяжении всего пути.

Решение . Обозначим буквой S длину всего пути, выраженную в километрах. Изобразим данные, приведенные в условии задачи 3, на рисунке 2.

– время, за которое поезд прошел первую половину пути, выраженное в часах;

– время, за которое поезд прошел вторую половину пути, выраженное в часах.

Следовательно, время, за которое поезд прошел весь путь, равно

В соответствии с формулой (1) средняя скорость поезда на протяжении всего пути

Ответ . 48 км/час.

Замечание 2 . Средняя скорость поезда в задаче 3 равна 48 км/час, а не 50 км/час, как иногда ошибочно полагают, вычисляя среднее арифметическое чисел (скоростей) 40 км/час и 60 км/час. Средняя скорость не равна среднему арифметическому скоростей, а является величиной, вычисляемой по формуле (1).

Движение по реке. Скорость течения реки

В отличие от задач на движение по суше, в задачах на движение по реке появляется новая величина – скорость течения реки.

По отношению к берегу, который неподвижен, скорость тела, движущегося по течению реки, равна сумме собственной скорости тела ( скорости тела по озеру, скорости тела в неподвижной воде, скорости тела в стоячей воде ) и скорости течения реки. По отношению к берегу скорость тела, движущегося против течения реки, равна разности собственной скорости тела и скорости течения реки.

Задача 4 . Моторная лодка прошла по течению реки 14 км, а затем 9 км против течения, затратив на весь путь 5 часов. Скорость лодки в стоячей воде 5 км/час. Найдите скорость течения реки.

Решение . Обозначим буквой v скорость течения реки и будем считать, что скорость v измеряется в км/час.Изобразим данные, приведенные в условии задачи 4, на рисунке 3.

5 + v – скорость, с которой лодка шла по течению реки (в км/час);

– время движения лодки по течению реки (в часах);

5 – v – скорость, с которой лодка шла против течения реки (в км/час);

– время движения лодки против течения реки (в часах);

Теперь можно составить уравнение, принимая во внимание тот факт, что лодка находилась в пути 5 часов:

Решим это уравнение:

По смыслу задачи первый корень должен быть отброшен.

Задача 5. (Бюро «Квантум») Моторная лодка прошла по течению реки 34 км и 39 км против течения, затратив на это столько же времени, сколько ей нужно, чтобы пройти 75 километров в стоячей воде. Найдите отношение скорости лодки в стоячей воде к скорости течения реки.

Решение . Обозначим vс (км/ч) скорость лодки в стоячей воде и обозначим vр (км/ч) скорость течения реки. Изобразим данные задачи 5 на рисунках 4 и 5.

Учитывая тот факт, что в обеих ситуациях лодка провела в пути одно и то же время, можно составить уравнение:

(3)

Если ввести обозначение

то, воспользовавшись формулой

перепишем уравнение (3) в виде

(4)

Умножая уравнение (4) на vр , получим

По смыслу задачи первый корень должен быть отброшен.

Движение по кольцевым трассам

Задача 6. (www.reshuege.ru) Из пункта A круговой трассы длиной 46 км выехал велосипедист, а через 20 минут из пункта A следом за велосипедистом отправился мотоциклист. Через 5 минут после отправления мотоциклист догнал велосипедиста в первый раз, а еще через 46 минут после этого мотоциклист догнал велосипедиста во второй раз. Найдите скорости велосипедиста и мотоциклиста.

Решение . К тому моменту, когда мотоциклист в первый раз догнал велосипедиста, мотоциклист ехал 5 минут, а велосипедист ехал 25 минут, причем проехали они один и тот же путь. Отсюда вытекает, что скорость мотоциклиста в 5 раз больше скорости велосипедиста.

Таким образом, обозначив буквой v (км/час) скорость велосипедиста, получаем, что скорость мотоциклиста равна 5v (км/час).

В условии задачи дано время, прошедшее между двумя последовательными встречами мотоциклиста и велосипедиста, – 46 минут. Это время необходимо выразить в часах, чтобы все единицы измерения были согласованными:

Изобразим данные задачи, касающиеся движения мотоциклиста и велосипедиста между первой и второй встречами, на рисунке 6.

Поскольку за время часа, прошедшее от момента первой встречи до момента второй встречи, мотоциклист проехал 46 км (вся круговая трасса) плюс путь, который проехал велосипедист за часа, то можно составить следующее уравнение:

Решая это уравнение, находим скорость велосипедиста:

Ответ . Скорость велосипедиста 15 км/час, скорость мотоциклиста 75 км/час.

Задача 7 . На дороге, представляющей собой окружность длиной 60 км, пункты A и B являются диаметрально противоположными точками. Велосипедист выехал из пункта A и сделал два круга. Первый круг он прошел с постоянной скоростью, после чего уменьшил скорость на 5 км/час. Время между двумя прохождениями велосипедиста через пункт B равно 5 часам. Найти скорость, с которой велосипедист прошел первый круг.

Решение . Для определенности будем считать, что велосипедист двигался по кругу по часовой стрелке и рассмотрим рисунок 7.

Если обозначить буквой v (км/час) скорость, с которой велосипедист прошел первый круг, то скорость велосипедиста на втором круге будет равна v – 5 (км/час), и можно составить уравнение

Решая это уравнение, находим скорость велосипедиста на первом круге:

Поскольку скорость велосипедиста на первом круге больше, чем 5 км/час, то первый корень должен быть отброшен.

Ответ . 15 км/час.

Желающие ознакомиться с примерами решения различных задач по теме «Проценты» и применением процентов в экономике и финансовой математике могут посмотреть разделы нашего справочника «Проценты. Решение задач на проценты», «Простые и сложные проценты. Предоставление кредитов на основе процентной ставки», а также наши учебные пособия «Задачи на проценты» и «Финансовая математика».

Приемы, используемые для решения задач на выполнение работ представлены в разделе нашего справочника «Задачи на выполнение работ».

С примерами решения задач на смеси, сплавы и растворы можно ознакомиться в разделе нашего справочника «Задачи на смеси, сплавы и растворы».

С демонстрационными вариантами ЕГЭ и ОГЭ , опубликованными на официальном информационном портале Единого Государственного Экзамена, можно ознакомиться на специальной страничке нашего сайта.

Особенности решения задач на определение скорости течения реки. Примеры решений

Одними из увлекательных задач по математике и физике, которые предлагает учитель решить школьникам, являются задачи на определение скорости течения реки. В данной статье рассмотрим особенности решения этих задач и приведем несколько конкретных примеров.

О каких задачах пойдет речь?

Каждый знает, что вода в реке обладает некоторой скоростью течения. Равнинные реки (Дон, Волга) текут относительно медленно, небольшие же горные реки отличаются сильным течением и присутствием водяных воронок. Любой плавающий предмет, который брошен в реку, будет удаляться от наблюдателя со скоростью течения реки.

Люди, которые купались в реке, знают, что против ее течения плыть очень тяжело. Чтобы продвинуться на несколько метров, необходимо приложить намного больше усилий, чем при движении в стоячей воде озера. Наоборот, движение по течению осуществляется практически без каких-либо затрат энергии. Достаточно лишь поддерживать тело на плаву.

Все эти особенности позволяют сделать следующий важный вывод: если тело, имеющее в стоячей воде скорость v, будет двигаться в русле реки, то его скорость относительно берега будет равна:

  • v + u для движения по течению;
  • v — u для движения против течения.

Здесь u — скорость течения.

Если тело движется под некоторым углом к течению, то результирующий вектор его скорости будет равен сумме векторов v¯ и u¯.

Формулы, которые необходимо запомнить

Помимо приведенной выше информации, для решения задач на скорость течения реки следует запомнить несколько формул. Перечислим их.

Скорость течения является величиной постоянной, а вот скорость тела (лодки, катера, пловца) в общем случае может меняться, как по величине, так и по направлению. Для равномерного прямолинейного движения справедливой будет формула:

Где S — пройденный путь, v — скорость перемещения тела. Если движение происходит с ускорением a, тогда следует применять формулу:

Помимо этих формул, для успешного решения задач следует уметь пользоваться тригонометрическими функциями при разложении векторов скорости на составляющие.

Теперь перейдем к решению конкретных задач.

Задача с лодкой и рыбаком

Один рыбак решил отправиться на своей лодке без мотора вверх против течения реки на расстояние 2 километра. В стоячей воде он бы преодолел это расстояние за 30 минут, но при движении по реке ему понадобился целый час. Необходимо найти, чему равна скорость течения реки.

Поскольку скорость воды в реке является величиной неизвестной, то обозначим ее буквой x. Скорость лодки также неизвестна, однако ее можно вычислить, используя значения из условия для движения в стоячей воде. Получаем для скорости v лодки:

Мы нашли скорость, с которой рыбак на лодке может перемещаться по спокойному озеру. Чтобы найти скорость лодки против течения, необходимо из найденной величины вычесть значение x. Тогда для движения вверх по реке можно записать следующее равенство:

Выражаем отсюда значение неизвестного параметра, имеем:

Осталось подставить цифры из условия задачи и записать ответ:

Таким образом, скорость течения в реке в два раза меньше таковой для лодки.

Задача с моторной лодкой

Моторная лодка совершает каждый день переходы по реке из пункта A в пункт B. Дистанция между A и B составляет 7 км. Известно, что скорость лодки по течению равна 8 км/ч. Чему равна скорость течения, если на путь вниз по реке лодка затрачивает на 10 минут больше времени, чем при движении вверх по ней.

В данном случае мы не знаем ни скорость моторной лодки, ни скорость воды в реке. Обозначим первую как y, а вторую как x. Тогда можно записать следующие четыре уравнения:

Первое уравнение отражает скорость лодки по течению, второе и третье уравнения связывают время и скорость при движении вниз и вверх по реке соответственно. Четвертое уравнение следует из условия задачи о разности времен прямого и обратного пути между пунктами A и B.

Сначала найдем из этих уравнений время t1 и t2:

Для определения скорости x воды в реке вычтем из второго третье уравнение, получим:

Подставляем в это равенство рассчитанные величины t1 и t2, а также расстояние между пунктами S, получаем, что вода в реке течет со скоростью 0,64 км/ч.

Задача: движение катера под углом к течению

Теперь решим задачу, которая требует умения пользоваться тригонометрическими формулами.

Катер начал движение от одного берега реки к другому под углом 60 o к течению. Скорость катера в стоячей воде равна 10 км/ч. Скорость течения составляет 2 км/ч. Необходимо определить, на какое расстояние катер сместится вдоль берега, прибыв на противоположную сторону реки. Ширина русла реки равна 500 метров.

Данную задачу следует решать, разбив путь катера на две составляющие: перпендикулярную и параллельную берегу. Используя данные задачи, для перпендикулярной составляющей пути можно записать выражение:

Где v — скорость катера, S1 — ширина реки. Подставляя данные, находим время, которое катер находился в пути:

Для вычисления параллельного берегу пути S2 к горизонтальной проекции скорости катера следует добавить скорость течения, тогда соответствующее равенство будет иметь вид:

Подставляя известные величины, получаем ответ: катер вдоль берега пройдет путь 404 метра.

Задачи на движение по реке

Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.

Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.

Задача 1. Катер движется против течения реки. За сколько часов он преодолеет расстояние 112 км, если его собственная скорость 30 км/ч, а скорость течения реки 2 км/ч?

Решение: Сначала узнаем скорость движения катера против течения реки, для этого от его собственной скорости отнимем скорость течения:

30 — 2 = 28 (км/ч) — скорость движения катера против течения.

Теперь можно узнать за сколько часов катер преодолеет 112 км, разделив расстояние на скорость:

Решение задачи по действиям можно записать так:

1) 30 — 2 = 28 (км/ч) — скорость движения катера против течения,

Ответ: За 4 часа катер преодолеет расстояние 112 км.

Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки.

Задача 2. Расстояние от пункта A до пункта B по реке равно 120 км. Сколько времени потратит моторная лодка на путь от пункта A до B, если её собственная скорость 27 км/ч, а скорость течения реки 3 км/ч?

Рассмотрите два варианта:

1) лодка движется по течению реки;

2) лодка движется против течения реки.

Решение: Если моторная лодка будет двигаться по течению реки, то её скорость будет равна сумме собственной скорости со скоростью течения реки:

Значит расстояние между пунктами лодка преодолеет за:

Если лодка будет двигаться против течения реки, то её скорость будет равна разности собственной скорости и скорости течения реки:

Значит, чтобы узнать сколько времени потратит лодка на путь от пункта A до пункта B, надо расстояние разделить на скорость:

Решение задачи по действиям для движения по течению реки можно записать так:

1) 27 + 3 = 30 (км/ч) — скорость лодки,

Для движения против течения реки решение задачи по действиям можно записать так:

1) 27 — 3 = 24 (км/ч) — скорость лодки,

1) При движении по течению реки моторная лодка потратит 4 часа на путь от пункта A до пункта B.

2) При движении против течения реки моторная лодка потратит 5 часов на путь от пункта A до пункта B.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: