15 просмотров

Что показывает эхолот когда лодка стоит на месте

Эхолот, теория и практика эхолокации

Если цену и технические навороты эхолота оставить в стороне, то механизм работы данного устройства выглядит так. Сначала формируется электрический импульс в блоке управления, далее импульс передается на датчик. Затем происходит преобразование электрического импульса в ультразвуковую волну, угол направления которой перпендикулярен поверхности воды. Волна проходит сквозь воду, достигает дна, отражается от него и возвращается назад. В конечном итоге ультразвуковая волна преобразуется назад в электрический импульс и обрабатывается блоком управления. Если на пути волны до дна встретились какие либо препятствия (рыбы, водоросли и т.п.) то информация о них также будет включена в итоговый сигнал, который получит датчик. После обработки сигнала блоком информация выводиться на экран справа в виде столбца. Последовательность таких сигналов и формирует изображение, которое перемещается по экрану справа налево.

Важным моментом в работе любого эхолота является скорость перемещения лодки, при которой он будет корректно отображать ситуацию под водой. Излучатель эхолота не отправит следующий импульс, пока не будет получен предыдущий.

Если учесть то, что в наших краях в основном небольшие глубины, где используются бытовые эхолоты, важным фактором становится скорость обработки сигналов процессором эхолота. Модели современных эхолотов работают на скоростях от 10 до 80 км/ч. Если хотите окунуться в расчеты то вот вам данные. Звуковая волна в воде распространяется со скоростью 1500 м/с. Скорость перемещения в лодке и глубину подставляете и получаете нужную цифру. Кроме быстродействия эхолота обязательно нужно смотреть на его дисплей, точнее на разрешение. Высокое разрешение по вертикали позволяет отображать мелкие объекты и поэтому 160 пикселей (или точек) уже вполне хорошее, а если 300 или 320 то такого точно будет достаточно. Разрешение по горизонтали это по сути история сканирования. Если вы используете эхолот на малых скоростях, то вам будет вполне достаточно и 160 пикселей, для больших скоростей лучше купить эхолот с разрешением по горизонтали 320.

Статья в тему:  Сколько турбина прибавляет мощности yamaha

Датчики и углы обзора эхолота

Эхолоты могут быть 1, 2, 3, 4 и 6 лучевые. Также бывают и 3D эхолоты (к примеру эхолоты Humminbird). Количество лучей зависит от типа датчика. Основа любого датчика эхолота это искусственный кристалл циркона свинца или титаната бария. Размер и геометрическая форма кристалла и определяют на каких частотах и со сколькими лучами будет работать датчик. Кроме количества лучей обязательно обратите внимание на пиковую и среднюю (RMS) мощность, частоту работы датчика и угол обзора. От части по пиковой мощности можно узнать максимальную глубину эхолокации. Польза от знания средней мощности так же есть. Чем меньше отношение пиковой и средней мощности тем на более больших скоростях сможет работать эхолот.

Современные эхолоты чаще всего используют частоты 50 и 200 кГц. Частота 50 кГц перекочевала в обычные эхолоты от морских судов. У этой частоты большой угол охвата и большая глубина сканирования, но низкое разрешение и плохое определение малых объектов, а также большая чувствительность к помехам. Датчики с 200 кГц предназначены для малых глубин и больших скоростей, они хорошо определяют мелкие объекты и не так чувствительны к помехам, но у них маленькая глубина сканирования и узкий угол охвата (обзора).

В теории звуковая волна, запущенная датчиком, распространяется в воде во все стороны, но ее распространение не является равномерным, т.к. датчик у нас узконаправленный. Мощность сигнала по центральной оси максимальна, чем дальше от этой оси, тем меньше его мощность и совсем на краях сигнал уже невозможно отличить от помех. Угол охвата принято измерять по уровню -10 дБ, т.е. на периферии мощность сигнала в 10 раз меньше чем на центральной оси. Но не стоит думать, что чем больше угол охвата, тем лучше в любом случае. К примеру глубину эхолот определяет по самой высокой точке дна, которая попала в конус луча. И если у 200 кГц датчика с углом 20 градусов на глубине в 10 метров пятно луча будет диаметром 3,5 метра, а у 60-ти градусного 83 кГц пятно будет уже 11,5 метров. Так вот первый может пропустить яму шириной не более 3,5 метров, а второй уже 11,5 метра. Разница ощутима, не правда ли? Небольшой угол охвата у датчика даст более точную картину дна.

Статья в тему:  Как посадить животное в лодку майнкрафт

Сегодня эхолоты все чаще используются не для сканирования дна, а для поиска рыбы, они так и называются – рыбопоисковые эхолоты (рекомендуем посмотреть эхолоты Lowrance). И для этих целей чаще всего используют двухлучевые датчики. К примеру датчик с частотой 200 кГц и углом 20 гр. сканирует дно, а 83 кГц и 60 гр. занимается поиском рыбы. Центральная ось у обоих лучей одна. На экране рыбы опознанные разными датчика обозначаются по разному. Опознанные узким лучом символы закрашиваются темным, а широким символы прозрачные. Но двухлучевой эхолот не может точно определить положение рыбы, слева она или справа от лодки. С этим справится уже трехлучевой эхолот. Кроме глубины, на котором определилась рыба будет обозначение L или R.

Для более точного определения местоположения рыбы используются четырехлучевые эхолоты. Они отлично подойдут для троллинга (ловли на дорожку). Но в таком эхолоте лучи находятся не на одной оси. Два луча работают как и у двух лучевых эхолотов, а вот два других сканируют под небольшим углом к центральной оси. Частота боковых датчиков обычно 455 гКц, угол 45 градусов. Экран таких эхолотов разделен на три части. В верхней показывается стандартная информация от двухлучевого датчика, а внизу слева и справа данные от высокочастотных боковых датчиков.

Самую полную информацию даст шестилучевой эхолот или 3D эхолот. У него датчик с шестью независимыми излучателями, угол охвата у каждого 16 градусов. Соседние лучи перекрывают друг друга и итоговый угол равен 53 градусов. Такой эхолот максимально точно показывает рельеф дна и расположение рыбы. На экране отрисовывается трехмерная картинка.

Статья в тему:  Как узнать год выпуска лодочного мотора honda

Что отображает эхолот на экране

Эхолот это ни в коем случае не телевизор, хотя что то похожее в них есть. Эхолот работает только в движении (смотрим теорию чуть выше). Если лодка стоит на месте и соответственно датчик неподвижен, то на экране вы увидите прямую линию, т.к. сигнал все время будет один и тот же.

Здесь вы видите экран эхолота Humminbird Matrix12. Практически все эхолоты умеют измерять глубину и эти данные они выводят на экран (45 ft-футов). Также у большинства есть встроенный термосенсор в датчик. Температура измеряется в поверхностном слое (56 F по фаренгейту). Если если еще и GPS датчик, то еще вы увидите и скорость своего перемещения (3,1 mph – мили в час). Напряжение питания выводиться внизу по центру (14.0 V). В правом нижнем углу диапазон глубины (60), он выбирается автоматически или вручную. Числа над символами рыб – это на какой глубине они были обнаружены.

Рельеф дна отрисует достаточно точно любой современный эхолот, а вот структуру дна нет. В этом случае все зависит от экрана и мощности эхолота. Для наших глубин большинству эхолотов вполне хватает мощности, а вот с качеством экрана могут быть проблемы. Для более менее нормального отображения структуры дна будет достаточным разрешение в 240 пикселей по вертикали и 4-х оттенках серого. Самым лучшим будет эхолот с цветным экраном. Цветные эхолоты разные структуры дна окрашивают в разные цвета. Но и у ч/б эхолотов есть методы отображения структуры дна.

Статья в тему:  Как сделать лодку из дерева маленькую

  • White Line – Белой линией на поверхности выделяются самые сильные сигналы, отделяя тем самым придонные структуры от твердого дна.

  • Structure ID – Темным отрисовываются сильные отраженные сигналы, слабые светлым оттенком.

  • Inverse – Сильные сигналы наоборот показаны светлым. Помогает определить именно слабые сигналы.

  • Black – Отображает твердое дно без придонные структур. Используется для точного определения рельефа дна.

Для точного определения придонных структур, в которых может прятаться рыба (а это каряги, растительность, топляки) необходим уже экран с 300 пикселями по вертикали и 10 оттенками серого. Хорошо если эхолот может определять термоклин (граница водных слове с разной температурой). Термоклин может помочь в поиске рыбы.

Рыба на экране эхолота может отображаться или дугами или символами. Системы идентификации рыб совершенствуются с каждым годом и в основе их лежит главный принцип: у каждой рыбы есть воздушный пузырь, он дает очень сильный отраженный сигнал и по уровню этого сигнала можно достаточно точно определить размер рыбы. Но это только принцип, по факту каждый производитель использует массу параметров для определения типа и размера рыбы. Рыба отображается тремя символами обычно: большая, средняя, мелкая.

Дополнительные функции эхолотов

Эхолот в современном представлении это уже не просто прибор для определения глубины. Сейчас он с легкостью определяет структуру дна, придонную структуру, размеры и типы рыб, температуру воды.

Статья в тему:  Как правильно сложить надувную лодку барк

Кроме всего этого эхолоты могут оснащаться дополнительным датчиком бокового обзора. Он показывает данные в стороне от текущего курса судна. Дополнительный беспроводной датчик Смарт Каст показывает рельеф дна и рыбу на расстоянии до 30 метров от стоящей лодки. Он также может использоваться при ловле с берега, т.к. не требует постоянного движения. Дополнительный датчик скорости показывает вашу текущую скорость и измеряет пройденное расстояние. Барометрический датчик – показывает данные о давлении воздух, по которым косвенно можно судить о погоде и прогнозировать ее изменения. GPS навигатор и картплоттер показывают ваше текущее местоположение на подробных картах местности, позволяют сохранять координаты с данными о глубине, траектории вашего движения.

Что нам показывает эхолот

Что такое эхолот, что он нам показывает, на чём основаны принципы его работы – наверное каждый задавался таким вопросом. Ответить на этот вопрос может наверное любой физик или человек неплохо в физике разбирающийся. Принцип действия эхолота заложен в само название прибора, эхо – это отражённый звук. Соответственно, что бы заполучить эхограмму,надо – датчик, который этот сам звук сформирует, отправит и примет его отражение, а так же монитор, который это отражение изобразит какими то символами, глядя на которые мы зададим себе вопрос – *а чёй-то это он кажет?*.
Примеры использования звука и его отражённого сигнала, есть не только там где присутствует вода, но и гораздо ближе – практически в любой больнице, это УЗИ. Кто делал УЗИ, наверняка обратили внимание, что доктор смазывает место где будет проводить датчиком, обильной смазкой, похожей на вазелин. Делается это для того, что бы между датчиком и поверхностью кожи не было воздуха, который как известно является плохим посредником между посланным и принятым сигналами. Отсюда и правило для размещения датчика эхолота на транце лодки – датчик всегда должен быть в воде. Раз уж я вспомнил про УЗИ, то объясню почему я не советую включать в меню символы рыб. Вы видели (кто был в кабинете где стоит УЗИ) что бы у доктора были включены символы камней в почках, печени или символы детей в утробе? То-то и оно, отсюда ещё один вывод – только реальная эхограмма, без домысливания прибором, способна показать нам правдивую информацию. Как разные доктора, которые видят одно и тоже изображение, но интерпретируют его по-разному, так и мы, видя изображение на экране эхолота, по-разному представляем себе структуру дна, форму бровки и направление залегания коряги, наличие рыб, их вид или количество.

Статья в тему:  Как изготовить лодочный мотор из бензокосы

Начнём с датчика. Самые распространённые частоты, на которых работают датчики, у производителей эхолотов – 50, 83, 200 кГц, а в последние годы к ним добавились 455 и 800 кГц. Из курса физики нам известно, что чем ниже частота, тем глубже она проникает, при этом чем выше частота, тем более качественный сигнал мы имеем.
200 кГц,самая распространенная частота для эхолотов. Работает примерно до 300 метров, создает луч шириной до 60 градусов (при условии установки высокого уровня чувствительности) и наиболее чистую и четкую картинку. Сам по себе этот луч узкий для более четкой прорисовки дна, но когда мы увеличиваем параметр чувствительности, он расширяется и, соответственно захватывает больше подводных объектов.
Для поиска рыбы широкий луч это хорошо, для изучения рельефа – плохо. Если луч будет слишком широкий, он будет собирать все подряд вокруг лодки. На экране будет масса дуг , бугров, бровок и т.д., но понять где это все есть или было будет весьма затруднительно. Но это еще не все. Есть еще один нюанс – если широким лучом прибор будет сканировать дно, то начнутся серьезные неточности между показаниями на экране и настоящим рельефом дна. Прибор просто будет усреднять всю информацию(с одной стороны яма, с другой бровка, где-то в стороне ровный стол и всё это надо как-то изобразить).
50кГц – морская частота, максимальная глубина до 1500м. В нашем случае она не нужна.
83кГц – также для пробивания более глубоких мест , с одной стороны, с другой стороны для расширенного обзора, так как луч при включении её расширяется до 120 градусов. Чем это расширение мне не нравится, написал выше.

Статья в тему:  Как будет на английском моторная лодка

Спорить о том что мы видим, можно было бы долго, не появись в эхолокации (массовой) новые технологии, которые у разных производителей называются по-разному. Я уже писал что являюсь бессменным пользователем эхолотов компании Lowrance, сначала это были Eagle и Lowrance, а сейчас Simrad, поэтому примеры буду приводить именно с этих приборов. Этим, я ни в коем случае не принижаю многие достойные эхолоты других производителей, таких как Хамминбёрд, Рэймарин, Гармин или Ситекс и Фуруно, у всех этих производителей есть аналогичные технологии, причём действующие очень похоже. Речь пойдёт о технологиях, которые у разных фирм , названы по-разному, но смысл имеющие один и тот-же. У Лоуренс это – DSI, у Хама – DI, у Рэя – Down Vision, у Гармина – DownVü. Все они так или иначе, работают на частотах – 455кГц или 800кГц. В чём прелесть всех этих технологий? Выражаясь простым языком, теперь мы видим что это действительно коряга, можем посчитать количество веточек на стволе, можем увидеть рыбу между веток или между барханов. Более того, мы можем пересчитать всех рыбок в стае. У меня есть несколько записанных эхограмм, где наглядно видна разница между изображениями с разных датчиков или разных частот.

Изображение
в левом верхнем углу взято с датчика 200 кГц, на нём угадывается упавшее дерево на дне и много-много рыб стоящих в-пол воды и у дна. Сразу оговорюсь, такое изображение можно увидеть на экране эхолота достаточно редко, чаще дерево выглядит бесформенным бугром на дне, как на этом фото(левый верхний угол)
а рыбы обрывками дуг или чёрточками. Как отображается рыба эхолотом? В идеале вот так

Каких-то точных, особых сигналов он не выдаёт. Рыба, по общим «рекомендуемым» понятиям видна в виде так называемых «дуг». Она образуется при прохождении рыбой через луч эхолота. Но эта дуга образуется только при идеальных условиях, когда рыба сначала попадает в край конуса луча, потом проходит через его центр, и выходит из него, пройдя весь его диаметр. Но так бывает далеко не всегда! Существует десятки разных вариантов нахождения рыбы в луче и тогда эта «дуга» будет отображаться совсем по другому. Идеальная дуга отображается когда рыба стоит на месте, а лодка медленно движется (или наоборот) и луч сканирует тело рыбы по её длине. Но что будет если рыба тоже перемещается по ходу лодки? Тогда она «зависает» в луче на месте и будет отображаться как неподвижный элемент – простой полосой (тоже самое будет если лодка и рыба стоят на месте – не двигаются относительно друг друга). А если она будет быстро плыть против движения лодки? Тогда рыба быстро пересечёт луч и отобразится как коротенькая крутая дуга, которую на большой глубине и рассмотреть-то будет проблематично. То есть – две одинаковые по размеру и форме рыбы при разном направлении или разной скорости перемещения будут отображаться совсем по разному! И те «рекомендации», что типа можно определить по длине дуги, что это щука или лещ – мягко говоря, бред. Хоть как-то определить вид рыбы можно по отражению от плавательного пузыря.

На левой половине экрана хорошо видны крупные особи карповой породы (у них очень крупный пузырь). Сам цвет пузыря при данных настройках имеет зелёно-жёлтый оттенок
Стаи малька могут выглядеть каким-либо бесформенным облаком или пятном.
Это изображение

сформировано в специальной программе, исходная эхограмма была вычищена и настройками яркости, цветности и контрастности доведена до того вида, который мы наблюдаем. А вот левое нижнее изображение это уже и есть новые технологии, о которых написал выше. Деревья ни с чем спутать невозможно, а рыбы показаны точками и чёрточками и это именно рыбы, а не пузыри воздуха или мусор.
Ещё дальше ушла технология, называемая в народе Структурсканер. Здесь тоже лучи имеющие частоты 455 или 800 кГц, как у систем нижнего сканирования, но они направлены по сторонам, причём длину лучей можно выставлять в меню. Изображение от такого датчика показано на мониторе как вид сверху(правое изображение), очень удобно оценивать с какой стороны лежат коряги, куда направлены, направление ям и бровок – всё очень наглядно. Подводные препятствия отбрасывают тени. По длине тени
можно определить длину и направление залегания коряги, длину ямы или бровки. Можно даже на дне найти вот такие интересные вещи По рассказам очевидцев, именно в этом месте перевернулся Прогресс и затонул, поиск его результатов не дал, так он и лежит до сих пор.
Эта статья писалась в течении нескольких дней, поэтому получилась несколько несвязанной, где-то мысль терялась, где-то забывал о чём ещё хотел написать. Поэтому может возникнуть много вопросов по этой теме.

Статья в тему:  Как сделать тележку для надувной лодки

Как эхолот определяет рыбу

Сегодня немало рыбаков осознали, насколько удобно и приятно использовать технические средства, чтобы рыбалка приносила не только приятные впечатления, но и хороший улов. Однако не всем понятно как эхолот определяет рыбу, а значит, прибор не всегда используется с максимальной полезностью.

У этих устройств обычно несколько функций, которые важны для удачной ловли. Так, прибор:

  • показывает местонахождение рыбы и ее размеры;
  • демонстрирует рельеф дна и определяет глубину водоема;
  • определяет тип дна, а также то, насколько оно плотное.

При использовании гаджета важно учитывать, какой у него луч сканирования (узкий или широкий), а также помнить о том, что сведения прибор передает непрерывно, потому картинка смещается – справа располагается последняя информация, а слева – уже несколько устаревшая.

Отображение информации о рыбных местах на экране

Эхолот определяет рыбу, отображая ее на экране по-разному. Основные принципы:

  • значки рыбы – многим новичкам это подходит, так как эхолот самостоятельно проводит интерпретацию информации и показывает пользователю, какой именно объект обнаружил, выбирая для него пиктограмму. Так как рыба может двигаться и быстро, и медленно, прибор не всегда корректно отображает информацию в этом режиме, и забывать об этом не стоит;
  • рыбные дуги – часть приборов позволяет вместо режима с пиктограммами перейти на данный тип отображения. В этом случае пользователи смогут рассмотреть дуги, которые и будут обозначать рыбные места. Такие дуги отличаются по длине, толщине, могут быть неполными, однако в любом случае они указывают на то, о чем мечтает рыбак.
Статья в тему:  Можно ли плыть на лодке

Однако только найти рыбу – для рыбака не самая важная задача. Гораздо интереснее понять, какого же та размера.

Как эхолот определяет рыбу по размеру

Пиктограммы различных устройств не одинаковы по размеру, но все равно так далеко не всегда можно судить о величине будущего улова. Наблюдение за рыбными дугами позволяет лучше понимать, какая рыба притаилась под водой. Показатели, на которые придется обратить внимание:

  1. Длина дуг, обозначающих местонахождение рыбы. Ошибочно думать, что длинная дуга означает крупный улов. Длина – это время, которое объект наблюдается эхолотом. Чем медленнее движется объект, тем длиннее будет его след.
  2. Толщина. Именно этот показатель подскажет, что ожидается внушительный улов: сигнал эхолота отражается от объекта, крупнее мальков. Так что стоит выделять дуги, которые по ширине превосходят остальные.
  3. Полная/неполная дуга. Неполная дуга тоже стоит внимания. За этим обозначением также может скрываться рыба, только она не прошла сквозь зону сканирования эхолотом полностью.
  4. Вертикальный флешер. Этот режим позволяет лучше разобраться с длиной и толщиной. В таком режиме более внушительными по толщине дугами будет отображаться более интересный для рыбаков объект.

С помощью эхолота можно найти подходящую рыбу для живца или найти рыбное место. Это полезный прибор, который поможет и летом, и в условиях зимней рыбалки.

Ищем живца с помощью прибора

Мелкая рыба у опытных рыбаков часто служит отличным живцом. На дисплее эхолота такая будет показываться точками, иногда пунктирной линией. Иногда она даже схожа с отображением водорослей. Определить, что перед вами именно то, что нужно, помогут следующие признаки:

  • живец не располагается в области дна – там для такой мелочи слишком опасно;
  • многие модели эхолотов подсвечивают мелкую рыбу отдельным цветом;
  • мелочь собирается в шаровидные скопления, и это можно увидеть как облака или сгустки, а не линии.
Статья в тему:  Можно ли плыть на лодке

Сориентировавшись по прибору, каждый рыбак с легкостью сумеет поймать живца для ловли более крупной рыбы.

Теперь вы знаете, как эхолот определяет рыбу. Успешная ловля ждет того, кто не забывает – более точные показатели дает режим рыбных дуг. Ширина дуги подсказывает, какая рыба крупнее. Половинчатая дуга – это тоже рыба, причем необязательно маленькая. Удачной вам ловли!

Читаем эхолот и его показания

С годами технология эхолота стала очень точной, что сделало ее полезной для определения подводной топографии и обнаружения многообещающих рыбных угодий, таких как обрывы или подводные сооружения, такие как насыпи, затонувшие деревья или даже затонувшие корабли. Кроме того, он также позволяет с большой точностью определять косяки или отдельные рыбы.

Однако общая проблема, с которой сталкивается большинство новичков, – это понять, как правильно читать экран эхолота. Здесь мы покажем вам, как именно читать эхолот, и интерпретировать результаты, чтобы улучшить успех вашей рыбалки.

  • Основы работы с эхолотом ↓
  • Как читать экран эхолота? ↓
  • Рыбные арки против рыбных точек ↓
  • Иконки значки рыбы на экране эхолота ↓
  • Как читать нижние изображения по сравнению с сигналами боковых изображений ↓
  • Как определить размер рыбы с помощью эхолота ↓
  • Как читать подводную топографию на экране эхолота ↓
  • Различные типы консистенции дна ↓
  • Как читать мигалку для зимней рыбалки ↓
  • Как читать эхолот Garmin ↓
  • Как читать эхолот Lowrance ↓
  • Заключительные замечания ↓
Статья в тему:  Как сделать тележку для надувной лодки

Основы работы с эхолотом

Первое, что вам нужно понять об эхолотах, это то, что они используют технологию сонара для получения подробной информации о том, что находится под вашей лодкой или каяком. Технология эхолота основана на отправке и приеме сигналов сонара.

Преобразователь эхолота посылает сигналы сонара (называемый конусом сонара) вниз в воду. Когда эти сигналы сонара попадают в объект, они отбрасываются обратно вверх, а затем приемник эхолота интерпретирует возвращенные сигналы и отображает их в виде фигур на экране. Подробнее об этом вы можете прочитать в нашей статье о том, как работают эхолоты .

В большинстве случаев луч эхолота относительно узкий, а это означает, что вы сможете видеть только то, что находится в значительной степени прямо под вашим судном. Однако, как только вы поймете, как применить это к максимальному эффекту, этой информации будет достаточно, чтобы дать вам огромное преимущество в поиске отличных возможностей для рыбалки. Важно помнить, что эхолот может работать только в воде, но не в воздухе (подробнее об этом читайте в нашей статье, могут ли эхолоты работать без воды? ).

Как только вы научитесь читать эхолот, вы будете точно знать, насколько глубоко дно под вашей лодкой, какова температура воды, какие структуры находятся под вами и где находится рыба. Кроме того, вы даже сможете оценить размер рыбы.

Статья в тему:  Как узнать год выпуска лодочного мотора honda

Как читать экран эхолота?

Рыбные арки против рыбных точек

На эхолотах 2D (включая эхолоты CHIRP, подробнее см. Ниже) рыба обычно отображается на экране в виде дуг с вершиной, направленной вверх. Этот эффект изгиба вызван тем фактом, что рыба находится в движении, движется через конус сонара и отбрасывает немного другой сигнал в зависимости от того, где в конусе сигнал сонара попадает на них.

На эхолотах, отображающих нисходящие изображения , рыба обычно отображается в виде точек , а не дуг. Это связано с тем, что сонар нисходящего изображения использует гораздо более узкий конус гидролокатора и, таким образом, показывает только небольшую часть того, что находится прямо под вашей лодкой.

Когда вы привыкнете распознавать рыбные дуги или точки на эхолоте, вы сможете с высокой точностью определять косяки рыб или даже отдельную рыбу. Вы даже сможете заметить свою приманку в воде, а также, если рядом с ней есть рыба.

Чем больше арки на эхолоте, тем больше размер рыбы (хотя имейте в виду, что настройка диапазона вашего эхолота также повлияет на размер дуг). Немного попрактиковавшись, вы сможете оценить размер рыбы, которую видите на экране эхолота. И, по мере практики, вы научитесь различать сигналы, которые соответствуют рыбе, и сигналы, исходящие от других подводных объектов, таких как растения и камни.

Статья в тему:  Как сделать лодку из дерева маленькую

Иконки значки рыбы на экране эхолота

Некоторые эхолоты имеют так называемую технологию Fish-ID , которая означает, что эхолот автоматически преобразует сигналы сонара в значки идентификации рыбы на экране дисплея, что упрощает пользователю идентификацию их как рыб.

Хотя в теории это звучит великолепно, проблема в том, что иногда технология не на 100% точна, а это означает, что эхолот помечает некоторые объекты как рыбу, которая на самом деле не является рыбой, и пропускает другие сигналы, которые являются рыбой.

Немного попрактиковавшись, вы научитесь лучше, чем технология Fish-ID, определять разницу между рыбой и другими объектами на экране эхолота. Из-за этого многие опытные рыболовы предпочитают рассматривать арки, а не иконы рыб. Имея небольшой опыт в интерпретации рыбных дуг, вы также сможете отличить рыбные дуги от других объектов более точно, чем с помощью технологии идентификации рыбы.

Как читать нижние изображения по сравнению с сигналами боковых изображений

Для визуализации вниз используется очень узкий конус сонара, который направляется вертикально вниз в воду, что отлично подходит для детального просмотра того, что находится прямо под вашей лодкой.

С другой стороны, для бокового обзора используются два конуса сонара, которые направляются вбок слева и справа от вашей лодки. В результате это поможет вам получить обзор общей подводной топографии по обе стороны от лодки.

Статья в тему:  Как посадить животное в лодку майнкрафт

Как правило, используйте боковую визуализацию для выявления многообещающих особенностей подводного ландшафта, а затем переключайтесь на визуализацию вниз, когда вы хотите идентифицировать рыбу в определенном месте.

Как определить размер рыбы с помощью эхолота

Как правило, более крупная дуга или точка означает более крупную рыбу. Тем не менее, есть дополнительная информация, которую можно почерпнуть из арок, исходя из их формы, а также их толщины и ширины. Большинство эхолотов показывают ширину каждой дуги, и вы можете использовать это, чтобы оценить длину рыбы.

Помимо ширины важна форма арки. Большая рыба будет отображаться на экране в виде полной толстой дуги с четко определенной кривой, в то время как более мелкая рыба будет отображаться как частичные дуги, которые не такие толстые и не такие изогнутые.

Если вы смотрите на косяк рыбок, они будут отображаться не в виде арок, а в виде точек или коротких линий. Лучший способ идентифицировать их как рыб основан на том факте, что они образуют «облако», висящее в воде. Такое поведение также помогает отличить их от более крупных рыб, таких как окунь, которые либо живут поодиночке, либо образуют небольшие группы с большим пространством между особями.

В идеале вы сможете идентифицировать стаю рыб-приманок, подвешенных в воде, и нескольких более крупных хищников под ними, что может стать отличным местом для заброса вашей приманки. Немного попрактиковавшись, вы сможете сосредоточить свою рыбалку на самой крупной рыбе, бросив приманку рядом с ней.

Статья в тему:  Как правильно сложить надувную лодку барк

Если вы хотите научиться читать эхолот с эхолотом CHIRP, ознакомьтесь со статьей о том, как читать эхолот CHIRP .

Как читать подводную топографию на экране эхолота

Помимо определения рыбы, также важно научиться использовать функцию определения глубины и рельефа дна. На большинстве эхолотов глубина (в футах или метрах) между дном и поверхностью воды отображается в верхнем левом углу дисплея. Прямо под глубиной обычно отображается температура воды.

Кроме того, на дисплее эхолота также отображается информация о структуре и плотности дна под вашим рыболовным каяком или лодкой. Вы можете использовать это с большим преимуществом, медленно перемещаясь по территории, чтобы определить структуры, такие как обрыв или затонувшее бревно, которые, как правило, привлекают много рыбы.

Чтобы получить общий обзор подводной топографии местности, вы можете установить для эхолота настройку широкого луча, но если вы хотите получить более подробное представление о конкретном месте, лучше всего изменить настройку сканирования на Узкий луч. Это создаст очень подробное изображение перспективного места и рыбы, находящейся в нем.

Подводные водоросли отображаются на экране эхолота в виде тонких вертикальных линий. Кроме того, вам следует искать ямы или углубления, так как они могут содержать скрывающуюся рыбу, а также бревна и подводные насыпи, которые также имеют тенденцию привлекать рыбу.

Различные типы консистенции дна

Немного потренировавшись, вы сможете многое сказать о стабильности дна на основе сигнала сонара. Твердое дно будет выглядеть более прочной и толстой линией по сравнению с илистым дном, которое на экране эхолота 2D выглядит более широким и «нечетким».

Статья в тему:  Как будет на английском моторная лодка

Как читать мигалку для зимней рыбалки

Если вы увлекаетесь подледной рыбалкой, вы, вероятно, захотите использовать эхолот с мигалкой, который специально разработан для этой цели. В отличие от обычных эхолотов, он отображает одномерные данные о толщине воды под прорубью (подробнее об этом читайте в нашем обзоре лучших мигалок для подледной рыбалки и о том, как они работают).

Кстати, вы также можете использовать обычный эхолот для подледной рыбалки (хотя правильное расположение датчика может оказаться затруднительным), и вы даже можете использовать его, чтобы стрелять эхолотом прямо сквозь лед, не сверля дыры (если вы Чтобы узнать больше об этом, ознакомьтесь с нашей статьей под названием « Может ли эхолот работать во льду» ).

Как читать эхолот Garmin

Эхолоты Garmin являются одними из самых надежных и широко используемых брендов, используемых как новичками, так и опытными рыболовами. В случае серии эхо-сигналов Garmin конус сонара отображается в правой части экрана. Это соответствует столбу воды прямо под вашей лодкой и будет отображать прямой сигнал о том, что в настоящее время там обнаружено. Слева от него находится двухмерная карта сонара, которая показывает, что некоторое время назад находилось в конусе сонара.

Цветной дисплей имеет цветовой код: самые сильные сигналы отображаются желтым цветом, а более слабые сигналы – синим и красным. Рыбы отображаются на экране в виде арок.

Статья в тему:  Как самому построить лодку для отдыха и рыбалки

Если вы хотите увидеть более подробную информацию об особенностях модели Garmin высокого класса, возьмите добычу в нашем обзоре Garmin Striker 7SV .

Как читать эхолот Lowrance

Lowrance – еще один очень популярный бренд эхолотов, который может предложить множество преимуществ. Одним из самых больших преимуществ является то, что датчик Lowrance HDI позволяет одновременно получать двухмерный сонар и нисходящую визуализацию. Таким образом, вы можете выбрать функцию разделения экрана, при которой изображение сонара будет отображаться в левой части экрана, а изображение внизу – в правой.

У каждого типа визуализации есть свои преимущества. Двухмерное изображение с помощью сонара отлично подходит для получения общего обзора местности, в то время как нижнее изображение лучше для получения более подробной информации о конкретных объектах и ​​рыбе с более высоким разрешением.

Дисплей сонара Lowrance также имеет цветовую кодировку, при этом желтый и красный цвета соответствуют самому сильному сигналу. Другими словами, если приемник возвращает более сильный сигнал, на дисплее это будет ярко-желтым и красным, а более слабые сигналы – синим или серым.

Если вам интересно узнать больше о функциях, предлагаемых Lowrance высокого класса, ознакомьтесь с нашим обзором Lowrance Elite 9 TI .

Заключительные замечания

На этом мы завершаем нашу статью о том, как читать эхолот. Если вы думаете о приобретении нового эхолота, ознакомьтесь с нашими обзорами лучших эхолотов стоимостью менее 30 000 рублей и лучших эхолотов стоимостью менее 50 000 рублей .

Статья в тему:  Как изготовить лодочный мотор из бензокосы

Наконец, если вы приобретете новый эхолот, вам также понадобится надежный источник питания для его работы. В этом случае вы можете ознакомиться с нашим обзором лучших аккумуляторов для эхолотов .

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: